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ISOTOPIC LIFTING OF SU(2)-SYMMETRY
WITH APPLICATIONS TO NUCLEAR PHYSICS!

R.M.Santilli?
We introduce the axiom-preservin}, nonlinear, nonlocal and noncanonical
isotopies/Q-operator deformations SUQ(2) of the SU(2)-symmetry; construct

their isorepresentations; and prove their lack of unitary equivalence to conven-
tional representations under the local isomorphism SU Q(Z) = SU(2). We then

apply the theory to the reconstruction of the exact isospin symmetry under
electromagnetic and weak interactions and to the exact representation of total
magnetic moments for the deuteron and few-body nuclei under the exact isospin

symmetry.

H3zoronuueckag SU(2)-cummerpas
B IPDUMEHEHHNH K SAEPHOM Pu3HKe

P.M.Cantiim
BBoaarcs akcMOMOCOXPAHSIOIMECS, HETHHEHHDbIE, HEJIOKAIbHbIE W HeKa-
HoHMueckme msoTonuuecku/Q-onepatopusie nedopmanuu SU Q(2) SU(2)-

CHMMETPHU; CO3AAIOTCE MX MBONPEACTABICHHS; M JOKA3IBACTCS HEAOCTATOK B
HHX eIMHO# SKBUBAJIEHTHOCTH OOLIENPHHATBLIM NPEACTARICHHSM B JIOKAJILHOM
nzomopdpuame .ﬁIQ(Z) = SU(2). Teopus 3aTeM NPUMEHSETCS K BOCCO3NAHMIO

TOYHOI M3OCTIMHOBOL CMMMETPHM B 3/IEKTPOMATHHTHBIX M C/Ia6hIX B3AUMODEH-
CTBHSIX M K TOYHOMY NPEACTABACHMIO BCEX MATHHTHBIX MOMEHTOB ACHTPOHA U
MAJIOHYKJIOHHO# CHCTEMBI B TOUHOM M30CITMHOBO CHMMETPHY.

1. Statement of the Problem

It is generally assumed that the SU(2)-spin symmetry (see, e.g., [1]
can solely characterize the familiar eigenvalues j (G+1) and
, 1 . . -
m,j=0, Feom=jj=1, .,

In this note we shall show that the isotopic/ Q-operator deformation of
SU(2), herein denoted SUQ(Z), while being locally isomorphic to SU(2), can

characterize the more general eigenvalues
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and others, where jand m have conventional values and f(A) is a real valued,
positive-definite function of A = detQ such that /(1) = 1.
For the two-dimensional case, the condition detQ =1 for

Q = diag(g,,, &,,) is realized by g, = g2_2' = A. This implies the preserva-

tion of the conventional value % of the spin, but the appearance of a non-

trivial generalization of Pauli’s matrices, herein called isopauli matrices,
with an explicit realization of the «hidden variable» A in the structure of the
spin % itself.

As a first application, we construct the isotopies of the conventional
isospin (see, e.g., {2,3 D) and show that they permit the reconstruction of an
exactS U(2) isospin symmetry under electromagnetic and weak interactions
because protons and neutrons acquire equal masses in the underlying
isospace.

It should be noted that the isotopic lifting SU(2) = SU (2) can be inter-

preted as an application of the so-called g-deformations [4 ], although in
their isotopic axiomatic formulation for the most general possible, integro-
differential operator Q [S). -

In the recent note [6 ] we have presented the isotopies of Dirac’s equa-
tion and shown their capability to provide a numerical representation of the
magnetic moment of few-body nuclei. As a second application, in this note
we re-inspect this result under an exact isospin symmetry realized with the
same magnitude of the magnetic moments of protons and neutrons in
isospace. Additional applications in nuclear physics, such as for the intro-
duction of a small nonlocal-nonhamiltonian term in the nuclear force, will be
presented elsewhere.

2. Isotopies of SU(2)-Symmetry

The understanding of this note requires a knowledge of: the nonlinear-
nonlocal-noncanonical, axiom-preserving isotopies of Lie’s theory, origi-
nally introduced in [7] (see the recent review [8 ] and general presentation
[9D; the isotopies 0(3) of the rotational symmetry O(3) submitted in [10];
the isotopies 0(3 1) of the Lorentz symmetry O(3.1) submitted in [11 }; and
the isotopies of quantum mechanics (QM), called hadronic mechanics
[HM ], originally submitted in [12 ] and then elaborated by various authors
(see recent studies [35,8,13 ] and monographs [14 ]).
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The fundamental notion is the isotopy of the unit of the theory consi-
dered [5—14], in this case, the generalization of the conventional trivial
unit I = diag (1, 1) of SU(2) into the most general possible, two-dimensio-
nal matrix 7 preserving the original axioms of / (smoothness, boundedness,
nonsingularity, Hermicity and positive-definiteness) as a necessary condi-
tion for isotopy,

I'=diag(l,1)>0=T=11,2% 129, 9", 0y, 0p",..) 500 @1

The isotopy of the unit then demands, for consistency, a corresponding,
compatible lifting of all associative products AB among generic QM quan-
tities A, B, into the isoproduct

AB= A B:=AQB, Q fixed, 2.2)

where the isotopic character of the lifting is established by the preservation
of associativity, i.e., A * (B+ C) = (A*=B)=*C.

The assumption T= Q—l then implies that / is the correct left and right
unit of the theory, T A=AsTs= A, in which case Q is called the isotopic
element, and Tis called the isounit. Note the appearance of g-deformations
in their Q-operator form at the very foundation of the theory [5].

The isotopies of the unit / = [ and of the product AB = A * B then
imply the necessary lifting of a/l mathematical structures of QM into those
of HM [5—18 ]. Here we mention the lifting of the field of complex numbers
C(x, +, x), with elements c, ordinary sum + and multiplication
¢ X ¢' = c¢c’, into the infinitely possible isotopies 6‘0(2‘\, +, *), with iso-
g\omp'\lex ’r\tum‘l\)ers c= c:l:, conventional sum + and isomultiplication
c e =cQ ¢y = (clcz)l (see [16,17 ] for details).

The isotopies of the unit, multiplication and fields then demand, for
mathematical consistency, corresponding compatible isotopies of the basic
carrier space, the two-dimensional complex Euclidean space E(z, z, 8, O)
with familiar metric 6 = diag(1, 1) into the complex two-dimensional iso-
euclidean spaces introduced in [11]

EQ(Z, 2,0, C):z= (zp 22),
8= 00 =g = diag (8, 8, =g >0, (2.3a)
t = 3 - .
z; g,.j(t, 2, 2, ...)zj =282, + 2,8),2, = inv,, (2.3b)

where the assumed diagonalization of Q is always possible (although not ne-
cessary) from its positive-definiteness.
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The isotopic character (as well as novelty) of the generalizati’gn is estab-
lished by the fact that, under the joint lifting of the metric = & = QP=g
and of the field C » 6Q, 7= Q_l, all infinitely possible isospaces
JAE‘Q(z, z, 6, 6) are locally isomorphic to the original space E(z,Zz, 4, C)
under the condition of positive-definiteness of the isounit I [I1]. In turn,
this evidently sets the foundation for the local isomorphism of the corres-
ponding symmetries.

Note that separation (2.3) is the most general possible nonlinear, non-
local and noncanonical generalization of the original separation z'z under

the sole condition of remaining positive-definite, i.e., of preserving the topo-
logy sigd = sigd = (+, +). The symmetries of invariant (2.3) are then
expected to be nonlinear, nonlocal and noncanonical, as desired.

The preceding isotopies imply, for consistency, the isotopies of Hilbert
spaces :(y |y ) € Cinto the so-called isohilbert space with isopro-

duct and isonormalization
o  (¥tP)=(PIQld)Tely ($t)=T e

Then, operators which are Hermitean (observable) for OM remain Her-
mitean (observable) for HM, as was first proved in [15].

The liftings of the Hilbert space then require corresponding isotopies of
all ,c\onverll\tional operations [13,14]. We here mention isounitarity
vt =0t t,\l’} =1 the isocigenvalue  equations H |y )=
+ HQ| v)= E+ |9)= Elj’\ ). the isoexpectation values (A=
=(v|04Q|y) /(v |Q|¥ ) et

The lifting of the unit, base field and carrier space then require, for
mathematical consistency, the lifting of the entire structure of Lie’s theory,
that is, the isotopies of enveloping associative algebras &, Lie algebras L, Lie
groups G, representation theory, etc. [7—9]. Here we mention the
isoassociative enveloping operator algebras E 0 with isoproduct (2.2);

A » B = AQB the Lie-isotopic algebras EQ with isoproduct

14, Bl =[A7Bl=A+B—B*A= AQB - BOA; 2.5)
e
the (connected) Lie-isotopic groups 6Q of isolinear isounitary transforms on
EQ(z, z,0,0)
2= 0w z2=0wQz=0WQ@ 7,5 % 9, pt, )z (2.6

Uw) = e"xgg = (XM, (2.6b)
I Q
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Uw) » Uw) = U(w') » Dw) = O(W + w'),
Uw) » U(-w) = D(0) = 1, .6¢)

where the reformulation in terms of the conventional exponentiation has
been done for simpl,i\city of calculations.
The isounitary UQ(Z) symmetry is the most general possible, nonlinear,

nonlocal and noncanonical, simple, Lie-isotopic invariance group of separa-
tion (2.3b) with realization in terms of isounitary operators on 0

vt =0t e U=T=0, Q.7

verifying isotopic laws (2.6).
U(g\) can be decomposed into the connected, special isounitary sym-
metry S UQ(2) for
det(UQ) = +1, 2.8)

plus a discrete part which is similar to that for O(3) [10]and is here ignored

for brevity. ~
The connected SUQ(Z) components admit the realization in terms of the

generators J « and parameters Bk of SU(2)

A i 7 * 6 i 7 ;) ~
U=Tle" %= []"2% 7, 2.9
Kk § k
under the conditions ~
r(J,0) =0, k=1,2,3. 2.10)

The isorepresentations of the isotopic algebras S’bQ(Z) can be studied by
imposing that the isocommutation rules have the Same structure constants of
SU(2), i.e., for the rules

[J’. s Ji] = J’.QJ'. - Jini = ie’.jk "k‘ 2.11)

with isocasimir 5 ~n~ A~

J =377, 2.12)
k

and maximal isocommuting set J 2 and J, as in the conventional case. These

assumptions ensure the local isomorphisms S’i/(2) = SU(2) by construction.

Let | bZ) be the d-dimensional isobasis of SUQ(Z) with iso-orthogona-
lity conditions -
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(b:.jltlb}i):=(b:.1|Q |b;')=aij, ij=12,.,n  (@.13)

By putting as in the conventional case 7 + = 7 L 3 .?2, and by repeating the
same procedure as the familiar one [1 |, we have

NNy ad N A d rd ~
Ty |y =61 6c), T2 5] = 8{6] - 1| 5,
d=1,2,..., k=1,2,...d, b = —b%, 67— 1) = 383+ 1).  2.19)

A consequence is that the dimensions of the isorepresentations of
SUQ(2) remain the conventional ones, i.e., they can be characterized by the
familiar expressionn = 2j+ 1, j= 0, 7, 1,... as expected from the isomor-
phism SU(2) = SU(2).

However, the explicit forms of the matrix representations are different
than the conventional ones, as expressed by the rules

(J) =%t Ib") (. —J+)*|bd (2.152)
Ty =% 1By e G =T )18, 2.15b)
Ty =Bl 1 +Tye |B0), @.150

under condition (2.10).

The isorepresentations of the desired dimension can then be con-
structed accordingly. In the next section we shall compute the two-dimen-
sional isorepresentations, while those of higher dimensions are studied else-
where [14].

A new image of the conventional SU(2)-symmetry is characterized by
our isotopic methods via the antiautomorphic map [/ = diag(l,1) =
= 1% = —1 called isoduality, first introduced in [10], which provides a
novel and intriguing characterization of antiparticles [14 ]. The correspon-

ding isodual SAU5(2) symmetry will be studied in a separate work.

In summary, our isotopic methods permit the identification of four phy-
sically relevant isotopies of SU(2) which, for the case of isospin, are given
by: the broken conventlonal SU(2) for the usual treatment of p — n; the
exact isotopic SU (2) for the characterization of p — n (see next section);
the broken isodual SUd(Z) symmetry for the characterization of the antipar-
ticles p — nin isodual spaces; and the exact, isodual, isotopic sve (2) for the

characterization of antiparticles p —  in isodual isospace.
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The reader may be interested in knowing that, when the positive- (or
negative-) definiteness of the isotopic elemnt Q is relaxed, the isotopes
SU(2) unify all three-dimensional simple Lie groups of Cartan classification
over a cor,n\ples field (of characteristic zero). In fact, we have the compact
isotopes SU(2) = SU(2) for &, >0, G,, >0 and the noncompact isotopes

S’i/(2) = SU(1,1) for &, >0 and 8, <0 (see [10] for the corresponding

unification of orthogonal groups over the reals). In this note we consider
only positive-definite isotopic elements Q.

3. Isotopies of Pauli Matrices

Recall that the conventional Pauli matrices g, (see, e.g. [2]) verify the
rules 00, = ie‘.jk O bj, k=1,2, 3. In this section we show that the iso-
algebra SU q(2) implies the existence of intriguing generalizations of these

familiar matrices.

To have a guiding principle, we recall that [12], in general, Lie-isotopic
algebras are the image of Lie algebras under nonunitary transformations. In
fact, under a transformation Yyt = /, a Lie commutator among generic
matrices A, B, acquires the Lie-isotopic form

U(AB - BA)U' = A'Qp' - B'Q A, 3.1a)

A" =UAUY, B =uBUt, Q= uty " = ot (3.1b)
We therefore expect a first class of fundamental (adjoint)

isorepresentations characterized by the maps J A= %"k >J . =UJ kUT,

vut =1, + % -+ %f(A), 3/4 > (3/4)]2(A), here called regular adjoint

isorepresentations of S UQ(Z).

An example is readily constructed via Egs. (2.15) resulting in the follo-
wing generalization of Pauli’s matrices here called regular isopauli matrices

0 ¢ 0 -ig
S = A—1/2 11 A A—1/2 11
al_A (gzzo ), 02_A (+i322 0 ),

A 8 0 .
=A"V2%22 , (3.22)
% (0 &

AN AN ~ N ~

lo,, o; ] = 0Qo, - ach’r\l. =2 €k 3,‘, Q= diag(g“, g,): (3.2b)
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where A = detQ = 8,18 >0, with generalized isoeigenvalues for
&) = a"anaf, =15, k=123,

T | By = (/212 | 32, (3.3a)

I |82y = (314 | B2y, i=1,2 (3.3b)
which confirm the «regular character of the generalization here considered.
The isonormalized isobasis is then given by a simple extension of the con-
ventional basis, | b) = g~!/2 | 5).

Recall that Pauli’s matrices are essentially unique, in the sense that
their transformations under unitary equivalence do not yield significant
changes in their structure, as well known. The situation is different for the
isopauli matrices, because isorepresentations are based on various degrees
of freedom which are absent in the conventional SU(2) theory, such as: 1)
infinitely possible isotopic elements Q; 2) formulation of the isoalgebra in
terms of structure functions {7 |; 3) use of an isotopic element for the isohil-
bert space different than that of the isoalgebra [13,14 ]; and others.

We shall call irregular adjoint isorepresentations of s UQ(2) those with

generalized eigenvalues other than (3.3), €.g., those of type (1.1). A first
example is given by the irregular isopauli matrices

A_O[ _ A 0-i _
=l10)T% %= (4 o =%

~ 322 0 _ ~
a,—(o __g“)—A103 3.4

which verify the isocommutation rules with structure functions
15,0, 1= 23y, 13, (6, 1= 2%AG,., 15,76, 1=2A5,, 3.5

without evidently altering the local isomorphisms SUQ(2) = SU(2).
The new isoeigenvalue equations are givenby

~

1 - I
13,*|3?)=15A|;7:.2), 1'5.|1?,_2)=%A(—2-A+ D18), (36

which comfirm the «irregular» character under consideration and provide an
illustration of Egs.(1.1).
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Yet another realization of irregular isopauli matrices is given by

~, |0 45’2_2”2 ~,_|0 _igz—zl/z A gi—ll 0
9=~ 2T2=1. /2 » T 3= -1}
&, 0 g, " 0 0 &

CN)}

with isocommutation rules and isoeigenvalues

VYo =iAdy, Wy, Iyl =idy, Uy I =iy,  (3.8a)

1
182, 77218 = l(l + Ai) 15%). (3.8b)
i 212 i

Note that the regular isorepresentations (3.2) are characterized by
Structure constants; while irregular isorepresentations (3.4) and 3.7 are
characterized by structure functions. Intriguingly, the former generally
occur in the mathematical study of SU 0(2), to have the local isomorphism

sU q(2) = SU(2) by construction, as done in Sect.2. However, the latter ge-

nerally occur in physical applications [13,14). This is due to the fact that
gcnerators are not changed by isotopies [7—9] (recall that they represent
physical quantities). Their embedding in an isotopic algebre then generally
implies the appearance of the structure functions.

By no means the above two classes exhaust all possible, physically
significant isorepresentations (in fact, we do not study here for brevity the
isorepresentations with different isotopic elements for the isoenvelope and
isohilbert space). We therefore introduce a third class under the name of
standard adjoint isorepresentations, which occur when the eigenvalues are
the conventional ones, but the algebra is isotopically nontrivial,

In fact, regular isopauli matrices (3.2) admit the conventional eigen-

value % for A = 1. This condition can be verified by putting &= gz_zI = 4.

We discover in this way the existence of the standard isopauli matrices

~ (0 2 A (0 =4y ~ 17! o

9 = (,1-1 0), %= (i}."' O)’ o3 = (0 _al (3.9
which admit all conventional eigenvalues and structure constants,

U, =ie 8, Txify =« 8 PaRy=@/a18 610
yet exhibit a «hidden variable» A in their very structure, Note however that
the functional dependence of 1 is left completely unrestricted by the isotopy.
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Thus, A can be an arbitrary, real-valued, nowhere null, nonlinear-integral
function, A = A(z, ¢, ¥, $T,...) =1=0.

Needless to say, irregular isorepresentations also become standard
under the condition det g = 1. We therefore have the following additional
standard isopauli matrices

~ {01 ~ (0 =i\ _ ~_ (a7t o
o= (1 0) =0,, 0,= (+i 0) =0, 0,= (O _1), 3.11a)

~t 0 12 N 0 —az A “l 0
= _1 - L = . .
g, (l : 0), a, (M I 0 ), A (0 —/1‘) (3.11b)

Isopauli matrices with generalized eigenvalues are useful for interior
structural problems, i.e., the description of a neutron in the core of a neutron
star or, along the same lines, for a hadron constituent. As such, the
applications of the general case of the SU (2) isosymmetry is studied else-

where [18].
When studying conventional particles, e.g., those of nuclear physics,
the subclass of SU (2) which is physically relevant is the special one with

conventional engenvalues which is studied in the next sections. The image
9,: of (3.9) under isoduality, called isodual Pauli matrices, will be studied

elsewhere.

4. Applications to Isospin in Nuclear Physics

As well known [2 ], the conventional SU(2)-isospin symmetry is broken
by electromagnetic and weak interactions. One of the first applications of
our isotopic/Q-operator deformation of SU(2) is to show that the isospin
symmetry can be reconstructed as exact at the nsotoplc level namely, there
exist a realization of the underlying isospace EQ(z, z, 6 C) in which protons

and neutrons have the same mass, although the conventional values of mass
are recovered under isoexpectation values.

The main idea is that the SU(2)-isospin symmetry is broken when reali-
zed in its simplest conceivable form, that via the Lie product AB—BA. How-
ever, when the same symmetry is realized via a lesser trivial product, such as
our Lie-isotopic product AQB—BQA [7], it can be proved to be exact even
under electromagnetic and weak interactions. Actually, the constant Q-mat-
rix acquires the meaning of a suitable average of these interactions.
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The reader should be aware that, by no means, this is an isolated occur-
rence, because it represents rather general capabilities of the Lie-isotopic
theory referred to as the isotopic reconstruction of exact space-time and in-
ternal symmetries when conventionally broken. For example, the rotational
symmetry has been reconstructed as exact for all infinitely possible ellip-
soidical deformations of the sphere [10]; the Lorentz symmetry has been
reconstructed as exact at the isotopic level for all possible signature preser-
ving deformations 7 = Qy of the Minkowski metric [11]; etc.

The reconstruction of the exact S’UQ(Z)-isospin symmetry is so simple

to appear trivial. Consider a twelve-component isostate
w,,(z))

&;(x) = (&) (%) “.1)

where {p\p(x) and @n(x) are solutions of the isodirac equation of note [6]
which transfroms isocovariantly under Q(3.l)xS’iIQ,(2) for the particular

subclass with conventional eigenvalues. In this note we study only the
SUQ(Z) part without any isominkowskian coordinates, thus restricting our

attention to the isonormalized isostates

-2 A 0 ~ ~
p>= (?) 2), ly,) = (A%)' (V’UQ'V’/‘): Lk=p,n, “4.2)

~
1]

ly

where Q = diag. 1,47"), T'= Q7= diag. 171, 4).
We then introduce the .SQ/Q(2)-isospin with realization (3.9) admitting

conventional eigenvalues i% and 3/4, defined over the isospace

Eyz7.8,0),8= 0o
We now select such isospace to admit the same masses for the proton

and the neutron. This is readily permitted by the «hidden variables A when
selected in such a way that

-1_ . 2 _ _
mp/l = m"l, i.e.,, A° = mp/m" = 0.99862. 4.3)
The mass operator is then defined by
-1
-~ _ 1 ~ 1 -1 A ’\_ m A 0
M= {il(mp+ m ) + —2—1 (mp— m, ) o} = 0 P m A 4.4
and manifestly represents equal masses m = m p/l_' = m,A in isospace.
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The recovering of conventional masses in our physical space is readily
achieved via the isoeigenvalue expression on an arbitrary isostate
~ A A m 0
Ms 1) = MIQIP) = MIp) = o m |19 (4.5)
n

or, equivalently, via the isoexpectation values
@, OMQIP ) =m,, @, 10MQI1})=m,. 4.6

Similarly, the charge operator can be defined by

A A -1
q—_-%e(1+a)=(a 0). @D

Thus, the S?JQ(2) charges on isospace are 4= e ! and g, = 0. However,
the charges in our physical space are the conventional ones,

®,100Q19) = ¢, ¥,100Q1%,)=0. 4.3)

The isodual S’b‘é( 2)-isospin characterizes the antiparticle p and n will

be studied elsewhere.

The entire theory of isospin and its applications |2 ] can then be lifted in
an isotopic form which remains exact under all interactions [14 ]. This is not
a mere mathematical curiosity, because it implies a necessary isotopy of the
nuclear force, e.g., via Y UQ(2)—isotopic exchange mechanism.

These dynamical implications are studied elsewhere. We only mention
that their physical origin lies in the old hypothesis that nuclear forces have a
(very small) nonlocal-nonhamiltonian component due to the overlapping of
the charge distributions of nucleons. The «hidden variable» A here intro-
duced merely provides an average of these novel components of the nuclear
force.

5. Application to Few-Body Nuclear Magnetic Moments

In the recent note [6 ] we have shown that the SU Q(2) symmetry permits

a direct representation of: 1) the expected nonspherical shapes of the charge
distribution of nucleons; 2) all their infinitely possible deformations due to
external forces; and 3) the consequential alteration of the «intrinsic» mag-
netic moment of protons and neutrons under sufficient conditions.
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These results were then applied in note [6 ] to the apparently first, exact
representation of the total magnetic moment of the deuteron and other few-

body nuclei. :
It is now recommendable to re-examine these results within the context

of the exact isospin symmetry of this note.
Consider nuclei with A even and introduce (A/2)-dimensional isospaces

E‘k(z, 8, 6’), 8= Q,9, isotopic elements Q,= diag. (4, A;l), detQ, =1,
isounits fk= Q;l, and related §U(2) isosymmetry for isospin% (the exten-

sion to odd A is the same as in QM). As well known (see, e.g., [2,3 ), total
nuclear magnetic moments are computed via the familiar expressions

S =
1= g9 (eh/2m c) s, g =5.585,

&) = - 3816, eh/2m =1, G.1a)
uB=gBr, gD =1, @D, (5.1b)

In the preceding section we selected the «hidden parameter» A to iden-
tify the p and n masses. We here select the A-parameter to render equal the
(magnitude of the) p—n magnetic moments via the model

,\‘ ' 1 A 1.— AN . -
k=AM, el + 5'1_ l(gp_ 8,) o3} = diag. (g g &4  (5.22)

g=17180= -2, G uQ1P) =g, k=p,n.  (5.20)

A simple isotopic lifting of the conventional QM isospin treatment (see
[14 ] for details), then leads to the following alternative formulation of mo-
del (3.9) of note [6]

M1 7 L
Fror = 722 L XL+ % Gy Lig+ Bga*Sga)- 5.3)

Recall that, in the conventional treatment we have two terms, called sca-
lar and vector components, with the latter being dominant over the former.
The dominance of the latter becomes greater under isotopies, and consti-
tutes the sole contribution for L = 0.

Consider now the case of the Deuteron (D) and the experimental value
of its magnetic moment
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o= 03857, (u =1). (5.4)

As well known, in QM we have the theoretical value
© UM =g +g, =087, (5.5

which, as such, does not represent value (§.4) exactly, while significant dif-
ferences persist under relativistic, L = 2 and other corrections (L = 1 is pro-
hibited by parity [2,3 }, while many-body techniques are evidently inappli-
cable for the deuteron).

In note [6] we provided the exact representation of value (5.4) via a
mutation u » ﬁ n of the p—n magnetic moments due to a small deformation of

their charge distributions. In this note we present the same result, but this
time obtained in an isospace with exact isospin symmetry and equal mag-
nitudes of the p—n magnetic moments in the deuteron, which is achieved for
value, in E‘(r, 7, 3, 6)

%= Ignl/lgpl = 3.816/5.5816 = 0.685, g'= 0.428. S.6
The use of the M formalism then yields the isoeigenvalues of (5.3)
e P = 2T,XS,00 + 259 = 0.857P. k)

This illustrates the possibility of exactly representing 4P as already done

in Sect. 3B of [6], but under the additional condition of having the same
magnitude of the p—n magnetic moments in isospace.
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